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In certain nonrenormalizable field theories scattering can take
place at a length scale r∗ much larger than the typical scale L∗ of
the nonrenormalizable terms in the Lagrangian.
(Dvali, GIudice, Gomez, Kehagias, Pirtskhalava, Grojean...)
Similar to ultra-Planckian scattering in gravitational theories, with
a black hole forming at distances comparable to the
Schwarzschild radius.
The Schwarzschild radius can be much larger than the Planck
length. If the formation and evaporation of a black hole are
viewed as a scattering process, the cross section is determined
by the Schwarzschild radius and not the Planck scale.
In the classicalization scenario, the center-of-mass energy can
be used to define the analogue of the Schwarzschild radius:
classicalization radius r∗.
If all scattering takes place at r∗ � L∗, the fundamental scale L∗

is irrelevant and no UV completion of the theory is needed.
Study an idealized scattering process (Dvali, Pirtskhalava).
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Quartic model
Lagrangian density (δ1 = ±1)

L =
1
2

(∂µφ)2 − δ1
L4
∗

4

(

(∂µφ)2
)2
.

Equation of motion

∂µ
[

∂µφ
(

1 − δ1L4
∗
(∂νφ)2

)]

= 0.

Idealized scattering process: collapsing spherical wavepacket

φ0(t, r) =
A
r

exp

[

− (r + t − r0)
2

a2

]

.

Perturbation theory (Dvali, Pirtskhalava): strong deformation at
the classicalization radius

r∗ ∼ L∗

(

A2L∗/a
)1/3

.

We have r∗ � L∗ when the center-of-mass energy s ∼ A2/a is
much larger than 1/L∗.
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Alternative point of view (Brouzakis, Rizos, N.T.)
With spherical symmetry, the equation of motion is (λ = δ1L4

∗
)

(

1 − 3λφ2
t + λφ2

r

)

φtt −
(

1 − λφ2
t + 3λφ2

r

)

φrr + 4λφrφt φtr

=
2φr

r

(

1 − λφ2
t + λφ2

r

)

.

This is a quasilinear second-order partial differential equation

A(φt , φr )φtt + B(φt , φr )φtr + C(φt , φr )φrr = D(φt , φr , r),

with discriminant

∆ =
1
4

(B2 − 4AC) = 3
(

1
3
− λφ2

t + λφ2
r

)

(

1 − λφ2
t + λφ2

r

)

.

∆ > 0: hyperbolic, ∆ = 0: parabolic, ∆ < 0: elliptic.
Hyperbolic equations admit wave-like solutions, while elliptic
ones do not support propagating solutions.
If A, B, C are evaluated for the unperturbed configuration, the
discriminant switches sign in the vicinity of the classicalization
radius. The equation is of mixed type.
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The equation of motion is equivalent to the conservation of the
energy-momentum tensor

∂t

[

1
2

(

φ2
t + φ2

r

)

+
λ

4

(

−3φ4
t + φ4

r + 2φ2
t φ

2
r

)

]

− 1
r2 ∂r

[

r2φtφr
(

1 − λφ2
t + λφ2

r

)]

= 0.

The local energy density is

ρ =
1
2

(

φ2
t + φ2

r

)

+
λ

4

(

−3φ4
t + φ4

r + 2φ2
t φ

2
r

)

.

The total energy is conserved during the evolution.
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Exact analytical solutions

For φ = φ(r) we obtain the static classicalons

φr (1 + λφ2
r ) =

c
r2 .

For a localized configuration of finite energy, φr ∼ c/r2 for large
r . This solution extends down to r = 0 for λ > 0, while it displays
a square-root singularity at rs 6= 0 for λ < 0.

It is possible to join smoothly two singular solutions. The field φ
would be double-valued for r > rs, while it would not be defined
for r < rs.

Exact dynamical solutions φ = φ(z), with z = r2 − (t − t0)2 and
h(z) given by the roots of the cubic equation

4λz2h3(z) + z2h(z) + c = 0.

Square root singularities: shock waves ? (Heisenberg)
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DBI model
Lagrangian density (δ2 = ±1)

L = − 1
δ2L4

∗

√

1 − δ2L4
∗
(∂µφ)

2
,

Equation of motion

∂µ

[

∂µφ/

√

1 − δ2L4
∗
(∂νφ)

2
]

= 0.

With spherical symmetry, the equation of motion is (λ = δ2L4
∗
)

(

1 + λφ2
r

)

φtt −
(

1 − λφ2
t

)

φrr − 2λφrφt φtr =
2φr

r

(

1 − λφ2
t + λφ2

r

)

.

Discriminant: ∆ = 1
4(B2 − 4AC) = 1 − λφ2

t + λφ2
r ≥ 0.

Local energy density

ρ =
1 + λφ2

r

λ
√

1 − λφ2
t + λφ2

r

− 1
λ
.
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Exact analytical solutions

Static classicalons (c > 0)

φr = ± c√
r4 − λc2

.

Field configuration induced by a δ-function source resulting from
the large concentration of energy within a small region of space
around r = 0 (Dvali, Giudice, Gomez, Kehagias).

For λ < 0 the solutions for both signs extend down to r = 0. For
λ > 0 they display a square-root singluarity at rs = λ1/4c1/2.
They can be joined smoothly in a continuous double-valued
function of r for r ≥ rs.

A similar construction: BIons, that describe Dirichlet
(d − 1)-branes embedded in (d + 1)-dimensional Minkowski
space, with the field φ the transverse coordinate (Gibbons).

N. Tetradis University of Athens

Dynamical Classicalization



Introduction Models Numerical solutions Conclusions

Exact dynamical solutions φ = φ(z), with z = r2 − (t − t0)2 and

h(z) = ± 1√
cz4 − 4λz

.

For both signs of λ, the solutions display square-root singularities
at the value zs = r2

s − (ts − t0)2 that satisfies z3
s = 4λ/c (c > 0).

The shock waves we encounter in the numerical solutions can be
fitted by functions with square-root singularities, but with
coefficients that do not match the ones deduced from the above
equation.
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Numerical method

Variant of the leap-frog scheme.

Discretized version of the equation of motion (U = φt , V = φr )

∆r
∆t

r2
i

[

G
(

U j+1
i ,V j+1

i

)

− G
(

U j−1
i ,V j−1

i

)]

= r2
i+1F

(

U j
i+1,V

j
i+1

)

− r2
i−1F

(

U j
i−1,V

j
i−1

)

.

Quartic: F = U(1 − λU2 + λV 2), G = V (1 − λU2 + λV 2)

DBI: F = U/(1 − λU2 + λV 2)1/2, G = V/(1 − λU2 + λV 2)1/2

Discretized version of the condition ∂φt/∂r = ∂φr/∂t

U j
i+1 − U j

i−1 =
∆r
∆t

(

V j+1
i − V j−1

i

)

.

N. Tetradis University of Athens

Dynamical Classicalization



Introduction Models Numerical solutions Conclusions

Possible problems

At some stage the solution develops a shock front. From this
point on, the numerical integration cannot be continued, as the
evolution of the shock depends on additional physical
assumptions about its nature (discontinuities in the field
configuration, or its derivatives).

At some time a real solution ceases to exist within a certain
range of r . This possibility is already apparent in the analytical
solutions.

The equation of motion switches type within a range of r . When it
becomes elliptic, its solution requires (Dirichlet or Neumann)
boundary conditions on a closed contour. The scattering problem
that we are considering cannot provide such conditions, as it is
set up through Cauchly boundary conditions at the initial time.
Boundary conditions on a closed contour would require the
values of φ or its derivatives at times later than the time of
interest.
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Figure: The nonlinear wavepacket at various times (solid lines) vs. the linear
wavepacket (dotted lines), in the context of the DBI model with δ2 = 1,
L∗ = 1. The initial wavepacket has A = 20, a = 1. The vertical dashed line
denotes the classicalization radius.
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Figure: The derivatives φt (dashed) and φr (solid) of the nonlinear field, and
the discriminant ∆ (solid grey), at two different times, before and after the
crossing of the classicalization radius. The model is the DBI model with
δ2 = 1, L∗ = 1. The vertical dashed line denotes the classicalization radius.
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Figure: The nonlinear field φ (solid) and the product 4πr2ρ, with ρ the energy
density (dashed). The model is the DBI model with δ2 = 1, L∗ = 1. The
vertical dashed line denotes the classicalization radius. The energy density is
multiplied by 5 × 10−4.
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Figure: The derivative of the function g(r − t) appearing in the asymptotic
form φ(t , r) = g(r − t)/r . A good fit can be obtained with two terms of the
form A/(r − t + c)n, with n ∼ 3 − 5. The model is the DBI model with δ2 = 1,
L∗ = 1.
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Figure: The derivatives φt (dashed) and φr (solid) of the nonlinear field, and
the discriminant ∆ (solid grey), at two different times, in the context of the
quartic model with δ1 = −1, L∗ = 1. The initial wavepacket has A = 20,
a = 1. The vertical dashed line denotes the classicalization radius.
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Figure: The nonlinear field φ (solid) and the product 4πr2ρ, with ρ the energy
density (dashed). The model is the quartic model with δ1 = −1, L∗ = 1. The
vertical dashed line denotes the classicalization radius. The energy density is
multiplied by 5 × 10−4.
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Confirmed features

The classicalization radius sets the scale for the onset of
significant deformations of a collapsing classical configuration
with large energy concentration in a central region.
The equation of motion is a quasilinear partial differential
equation of hyperbolic type at early times. At distances
comparable to the classicalization radius, the nonlinearities
become significant and can change the equation type. It seems
likely that the initial conditions of the scattering process are not
appropriate for the solution of the mixed type equation.
Shock fronts develop during the scattering process at distances
comparable to the classicalization radius.
The most important observable feature of the classicalization
process is the creation of an outgoing field configuration that
extends far beyond the classicalization radius. This feature
develops before the deformed wavepacket reaches distances of
the order of the fundamental scale L∗.
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Open issues
Within the DBI model the collapsing wavepacket can approach
distances ∼ L∗ before strong scattering appears. However, this
could be a special feature of the DBI model.
The scattering in the early stages of the classicalization process
seems to be minimal. The tail of the field configuration carries a
negligible amount of energy, because the corresponding modes
are extremely soft. Within the DBI model, the bulk of the energy
can end up within a region of size ∼ L∗.
Our analysis does not provide evidence for the creation and
subsequent decay of a quasistatic classicalon configuration.
Instead, the classicalization scenario seems to be a fully
dynamical process.
The scattering problem may not have real solutions over the
whole space. Static classicalons seems to exist in the two cases
(quartic model with λ > 0 and DBI model with λ < 0) in which a
dynamical solution ceases to exist at an early stage of the
evolution.
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Toy quantum-mechanical model

Analogue of the DBI model (δ = ±1 and ξ > 0)

L = − 1
δ ξ

√

1 − δ ξ ẋ2 − 1
2
ω2x2

Equation of motion: ẍ + (1 − δ ξ ẋ2)3/2 ω2x = 0.
Conserved energy: E = 1

δ ξ
√

1−δ ξ ẋ2
+ 1

2ω
2x2 = 1

δ ξ + 1
2ω

2x2
0

δ = 1: Relativistic oscillator. Analogous to DBI model with λ > 0.
δ = −1:
For x2

0 < 2(ξ ω2)−1 a real oscillating solution exists.
For x2

0 > 2(ξ ω2)−1 no real solution below x2 = x2
0 − 2(ξ ω2)−1,

where ẋ diverges. Energy cannot be conserved.
Analogous to DBI model with λ < 0. The partial derivative with
respect to φt of the energy density vanishes when 1 + λφ2

r (the
coefficient of φtt in the equation of motion) becomes zero.

New scale: r̃∗ ∼ L∗

(

A2L∗/a
)1/2

> r∗ ∼ L∗

(

A2L∗/a
)1/3

.
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Toy model (δ = −1):
Conjugate momentum: p = ẋ/

√

1 + ξẋ2.
It has a maximum, equal to 1/

√
ξ, obtained for ẋ → ∞.

DBI model with λ < 0:
Conjugate momentum density: π = φt/

√

1 − λφ2
t + λφ2

r .

Its partial derivative with respect to φt vanishes at r̃∗.

Toy model Hamiltonian: H = 1
ξ − 1

ξ

√

1 − ξp2 + 1
2ω

2x2.

Solve the Schrödinger equation in momentum space with

Ĥ = 1 −
√

1 − p2 − 1
2
ω2 d2

dp2 ,

requiring that the wavefunction ψ(p) vanishes outside the interval
[−1/

√
ξ, 1/

√
ξ].

Construct localized wavepackets and study their evolution in
x -space.
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Figure: t = 0
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