Holographic fluids, vorticity and analogue gravity

Marios Petropoulos

CPHT - Ecole Polytechnique - CNRS

Recent developments in high-energy physics and cosmology

EESFYE - Ioannina - April 2012

(published work with R. Leigh and A. Petkou and forthcoming works with M. Caldarelli, R. Leigh, A. Petkou, V. Pozzoli and K. Siampos)

Highlights

Motivations

Holographic fluids

AdS Kerr & Taub–NUT backgrounds

Alternative interpretations

Outlook

Framework

$AdS/CFT \rightarrow QCD \& plethora of strongly coupled systems$

- Superconductors and superfluids [Hartnoll, Herzog, Horowitz '08]
- Quantum-Hall fluids [e.g. Dolan et al. '10]

Holography also applied to hydrodynamics i.e. to a regime of local thermodynamical equilibrium for the boundary theory

- ► Conjectured bound $\eta/s \ge \hbar/4\pi k_B$ saturated in holographic fluids (nearly-perfect) [Policastro, Son, Starinets '01, Baier et al. '07, Liu et al. '08]
- More systematic description of fluid dynamics [many authors since '08 originated by Minwalla et al.]

Why vorticity?

Developments in ultra-cold-atom physics: new twists in the physics of near-perfect neutral fluids fast rotating in normal or superfluid phase \rightarrow new challenges in strong-coupling regimes / exotic phases

Below BEC-transition: rotation (\sim 100 Hz) creates networks of vortices

He⁴
$$\bar{a}\sim 10^{-4}~\mu\text{m},~T_{\text{c}}\approx 2.17~\text{K},~\xi\sim 10^{-4}~\mu\text{m},~a_{\text{v}}\sim 1~\text{mm}$$
 \Rightarrow a few highly populated vortices (\rightarrow 1995)

BEC
$$\bar{a} \sim 0.25 \,\mu\text{m}$$
, $T_{\rm c} \sim 100 \,\text{nK}$, $\xi \sim 0.5 \,\mu\text{m}$, $a_{\rm v} \sim 2 \,\mu\text{m}$ $\Rightarrow 100 \text{ to } 200 \text{ vortices } (1995 \rightarrow)$

Dilute rotating Bose gases in harmonic traps – potentially fractional-quantum-Hall liquids or topological (anyonic) superfluids

[e.g. Cooper et al. '10, Chu et al. '10, Dalibard et al. '11]

Figure: Trap, rotation and Landau levels – toward a strongly coupled FQH phase for small filling factor ($\nu = \text{particles/vortices} \approx 1$)

Foreseeable progress in the measurement of transport coefficients calls for a better understanding of the strong-coupling dynamics of vortices Developments in analogue-gravity systems for the description of sound/light propagation in moving media [Linruh'81; review by M. Visser et al. '05]

Propagation in D-1-dim moving media

Null waves or rays in *D*-dim "analogue" curved space—times

Holographic description of the D-dim set up?

Sometimes in supersonic/superluminal vortex flows: $v_{medium} > v_{wave}$

▶ Horizons & optical or acoustic black holes

Figure: White hole's horizon in analogue gravity

- ► Hawking radiation [Belgiorno et al. '10, Cacciatori et al. '10]
- ► Vortices and Aharonov—Bohm effect for neutral atoms [Leonhardt

et al. '00, Barcelo et al. '05]

Aim

Use AdS/CFT to describe rotating fluids viewed

- ▶ either as genuine rotating near-perfect Bose or Fermi gases
- ► or as analogue-gravity set ups for acoustics/optics in rotating media [see also Schäfer et al. '09, Das et al. '10]

Highlights

Motivations

Holographic fluids

AdS Kerr & Taub–NUT backgrounds

Alternative interpretations

Outlook

Holographic backgrounds

Applied beyond the original framework – maximal susy YM in D=4 – usually in the classical gravity approximation without backreaction

- ▶ Bulk with $\Lambda = -3k^2$: asymptotically AdS d = D + 1 dim \mathcal{M}
- ▶ Boundary at $r \to \infty$: asymptotic coframe E^{μ} $\mu = 0, ..., D-1$

$$\mathrm{d}s^2 pprox rac{\mathrm{d}r^2}{k^2 r^2} + k^2 r^2 \eta_{\mu\nu} E^{\mu} E^{
u} = rac{\mathrm{d}r^2}{k^2 r^2} + k^2 r^2 g_{(0)\mu\nu} \mathrm{d}x^{\mu} \mathrm{d}x^{
u}$$

Holography: determination of $\langle \mathcal{O} \rangle_{\text{bry. F.T.}}$ as a response to a boundary source perturbation $\delta \phi_{(0)}$ (momentum vs. field in Hamiltonian formalism – related via some regularity condition)

Where is the fluid?

Via holography: boundary field theory at finite T and μ Fluid \equiv hydrodynamic approximation of the boundary theory

- ▶ at stationarity local thermodynamic equilibrium
- ▶ disturbed → response alternative to kinetic theory

Fluid described in terms of \mathbf{u} , ε , p, T in $T_{\mu\nu}$ s.t. $\nabla_{\mu}T^{\mu\nu}=0$

Pure gravity

Holographic data

- ► Field $g_{rr}, g_{\mu\nu} \rightarrow g_{(o)\mu\nu}$: boundary metric source
- ▶ Momentum T_{rr} , $T_{\mu\nu} \rightarrow T_{(o)\mu\nu}$: $\langle T_{(o)\mu\nu} \rangle$ response

Palatini formulation and 3+1 split [Leigh, Petkou '07, Mansi, Petkou, Tagliabue '08] θ^a : orthonormal coframe $(\eta:+-++)$

$$ds^2 = \eta_{ab}\theta^a\theta^b$$

with a gauge choice s.t. $\theta^r = \frac{dr}{kr}$, $\theta^{\mu} = \theta^{\mu}_{\nu} dx^{\nu}$, $\mu = 0, 1, 2$

Holography: Hamiltonian evolution from data on the boundary – captured in Fefferman–Graham expansion for large r [Fefferman, Graham '85]

$$\theta^{\mu}(r,x) = kr E^{\mu}(x) + \frac{1}{kr} F^{\mu}_{[2]}(x) + \frac{1}{k^2 r^2} F^{\mu}(x) + \cdots$$

Independent 2+1 boundary data: vector-valued 1-forms E^{μ} and F^{μ}

- ► E^{μ} : boundary orthonormal coframe allows to determine $ds_{\text{brv.}}^2 = g_{(0)\mu\nu} dx^{\mu} dx^{\nu} = \eta_{\mu\nu} E^{\mu} E^{\nu}$
- ► F^{μ} : stress-tensor current one-form allows to construct the boundary stress tensor $(\kappa = 3k/8\pi G)$

$$T = \kappa F^{\mu} e_{\mu} = T^{\mu}_{\ \nu} E^{\nu} \otimes e_{\mu}$$

Highlights

Motivations

Holographic fluids

AdS Kerr & Taub–NUT backgrounds

Alternative interpretations

Outlook

AdS Kerr: the solid rotation

The bulk data

$$\begin{split} \mathrm{d}s^2 &= (\theta^r)^2 - (\theta^t)^2 + (\theta^\theta)^2 + (\theta^\varphi)^2 \\ &= \frac{\mathrm{d}\tilde{r}^2}{V(\tilde{r},\theta)} - V(\tilde{r},\theta) \left[\mathrm{d}t - \frac{a}{\Xi} \sin^2\theta \, \mathrm{d}\varphi \right]^2 \\ &+ \frac{\rho^2}{\Delta_\theta} \mathrm{d}\theta^2 + \frac{\sin^2\theta\Delta_\theta}{\rho^2} \left[a \, \mathrm{d}t - \frac{r^2 + a^2}{\Xi} \mathrm{d}\varphi \right]^2 \end{split}$$

$$V(\tilde{r},\vartheta) = \Delta/\rho^2$$
 with

$$\begin{array}{ll} \Delta &= \left(\tilde{r}^2 + a^2\right) \left(1 + k^2 \tilde{r}^2\right) - 2M\tilde{r} \\ \rho^2 &= \tilde{r}^2 + a^2 \cos^2 \vartheta \\ \Delta_\vartheta &= 1 - k^2 a^2 \cos^2 \vartheta \\ \Xi &= 1 - k^2 a^2 > 0 \end{array}$$

The boundary metric – following FG expansion

$$\begin{array}{ll} \mathrm{d} s_{\mathrm{bry.}}^2 &= \eta_{\mu\nu} E^\mu E^\nu = g_{(0)\mu\nu} \mathrm{d} x^\mu \mathrm{d} x^\nu \\ &= - \left(\mathrm{d} t - \frac{a \sin^2 \vartheta}{\Xi} \mathrm{d} \varphi \right)^2 + \frac{1}{k^2 \Delta_\vartheta} \left(\mathrm{d} \vartheta^2 + \left(\frac{\Delta_\vartheta \sin \vartheta}{\Xi} \right)^2 \mathrm{d} \varphi^2 \right) \end{array}$$

- spatial section: squashed 2-sphere
- $\nabla_{\partial_t} \partial_t = 0$: observers at rest are inertial
- ▶ note: conformal to Einstein universe in a rotating frame (requires $(\vartheta, \varphi) \rightarrow (\vartheta', \varphi')$)

The boundary stress tensor $\kappa F^{\mu}e_{\mu}$ [see also Caldarelli, Dias, Klemm '08]

$$T = T_{\mu\nu}E^{\mu}E^{\nu} = \frac{\kappa Mk}{3} \left(2(E^{t})^{2} + (E^{\theta})^{2} + (E^{\varphi})^{2} \right)$$

perfect-fluid-like $(T = (\varepsilon + p)u \otimes u + p\eta_{\mu\nu}E^{\mu} \otimes E^{\nu})$

- ▶ traceless: conformal fluid with $\varepsilon = 2p = \frac{2\kappa Mk}{3} \propto T^2$
- ▶ velocity field $\mathbf{u} = e_t = \partial_t$: comoving & inertial

Vorticity but no expansion or shear – the viscosity η , ζ *is not felt*

$$\omega = \frac{1}{2} du = \frac{1}{2} db = \frac{a \cos \theta \sin \theta}{\Xi} d\theta \wedge d\varphi = k^2 a \cos \theta E^{\theta} \wedge E^{\varphi}$$

Reminder:
$$u \to \nabla_{\mu} u_{\nu} \to \{a_{\mu}, \sigma_{\mu\nu}, \Theta, \omega_{\mu\nu}\}$$

AdS Taub–NUT: the nut charge

The bulk data [Taub '51, Newman, Tamburino, Unti '63]

$$\begin{split} \mathrm{d}s^2 &= (\theta^r)^2 - (\theta^t)^2 + (\theta^\vartheta)^2 + (\theta^\varphi)^2 \\ &= \frac{\mathrm{d}\tilde{r}^2}{V(\tilde{r})} - V(\tilde{r}) \left[\mathrm{d}t - 2n\cos\vartheta\,\mathrm{d}\varphi \right]^2 + \rho^2 \left[\mathrm{d}\vartheta^2 + \sin^2\vartheta\,\mathrm{d}\varphi \right]^2 \\ V(\tilde{r}) &= \frac{\Delta}{\rho^2} \text{ with} \\ \Delta &= \left(\tilde{r}^2 - n^2 \right) \left(1 + k^2 \left(\tilde{r}^2 + 3n^2 \right) \right) + 4k^2 n^2 \tilde{r}^2 - 2M\tilde{r} \\ \rho^2 &= \tilde{r}^2 + n^2 \end{split}$$

No rotation parameter a but nut charge n – one of the most peculiar solutions to Einstein's Eqs. [Misner'63]

Parenthesis: Kerr vs. Taub–NUT (Lorentzian time)

Taub–NUT: rich geometry – foliation over squashed 3-spheres with $SU(2) \times U(1)$ isometry (homogeneous and axisymmetric)

- ▶ horizon at $r = r_+ \neq n$: 2-dim fixed locus of $-2n\partial_t \rightarrow bolt$ (Killing becoming light-like)
- lacktriangle extra fixed point of $\partial_{\varphi} 4n\partial_t$ on the horizon at $\vartheta = \pi$

nut at $r=r_+$, $\vartheta=\pi$ from which departs a *Misner string* (coordinate singularity if $t\not\cong t+8\pi n$) [Misner '63]

Kerr: stationary (rotating) black hole

- ▶ horizon at $r = r_+$: fixed locus of $\partial_t + \Omega_H \partial_{\varphi} \rightarrow \text{bolt}$
- ▶ pair of nut–anti-nut at $r=r_+$, $\vartheta=0$, π (fixed points of ∂_{φ}) connected by a Misner string [Hunter '98, Manko et al. '09, Argurio et al. '09]

Pictorially: nuts and Misner strings

Figure: Kerr vs. Taub-NUT

How is Taub–NUT related to rotation?

Back to Taub-NUT

Following $FG \rightarrow boundary metric and stress tensor$

$$\begin{split} \mathrm{d} s_{\rm bry.}^2 &= \eta_{\mu\nu} E^\mu E^\nu = g_{(0)\mu\nu} \mathrm{d} x^\mu \mathrm{d} x^\nu \\ &= - \left(\mathrm{d} t - 2 n (\cos \vartheta - 1) \mathrm{d} \varphi \right)^2 + \frac{1}{k^2} \left(\mathrm{d} \vartheta^2 + \sin^2 \vartheta \mathrm{d} \varphi^2 \right) \\ T &= T_{\mu\nu} E^\mu E^\nu = \frac{\kappa M k}{3} \left(2 (E^t)^2 + (E^\vartheta)^2 + (E^\varphi)^2 \right) \end{split}$$

Fluid interpretation: perfect-like stress tensor

- conformal with $\varepsilon = 2p = \frac{2\kappa Mk}{3}$
- velocity field $\mathbf{u} = e_t = \partial_t$: comoving & inertial

Same fluid: no expansion, no shear but vorticity

The vorticity on the boundary of AdS Taub-NUT

$$b = -2n(1 - \cos \vartheta) d\varphi$$

$$\omega = \frac{1}{2} db = -n \sin \vartheta d\vartheta \wedge d\varphi = -nk^2 E^{\vartheta} \wedge E^{\varphi}$$

Dirac-monopole-like vortex ("hedgehog" or homogeneous)

Kerr produces a dipole without nut charge: $\int \omega = 0$ – solid rotation Taub–NUT is well designed to describe "monopolar" vortices

∃ multipolar b yet to be unravelled in the bulk [Weyl 1919]

Remark

Rotation in flat space (spherical coordinates)

Data:
$$\vec{v}$$
 $\vec{\omega} = 1/2\vec{\nabla} \times \vec{v}$

- ▶ Solid rotation ($\ell = 2$):
 - $ightarrow ec{v} = \Omega \partial_{arphi}$ and $\|ec{v}\| = \Omega r \sin \vartheta$ (regular)
 - $ightarrow ec{\omega} = \Omega \cos artheta \partial_r rac{\Omega \sin artheta}{r} \partial_{artheta} = \Omega \partial_{z} \; ext{(uniform)}$
- ▶ Ordinary vortex ($\ell = 0$):
 - $\vec{v} = \frac{\beta}{r^2 \sin^2 \theta} \partial_{\varphi}$ and $\|\vec{v}\| = \frac{\beta}{r \sin \theta}$ (singular at $\theta = 0, \pi$)
 - $\vec{\omega}=0$ (irrotational) up to a δ -function contribution
- ▶ Dirac-monopole vortex $(\ell = 1)$:
 - $\vec{v} = \alpha \frac{1-\cos\theta}{r^2\sin^2\theta} \partial_{\varphi}$ and $\|\vec{v}\| = \alpha \frac{1-\cos\theta}{r\sin\theta}$ (singular at $\theta = \pi$)
 - $\vec{\omega} = \frac{\vec{\alpha}}{2r^2} \vec{\partial}_r$ (hedgehog)

Highlights

Motivations

Holographic fluids

AdS Kerr & Taub-NUT backgrounds

 $Alternative\ interpretations$

Outlook

Randers forms and Zermelo metrics [Zermelo '31, Randers '41]

The boundary geometries describing vorticity are stationary metrics of the Randers—Papapetrou form

$$ds^2 = -(dt - b)^2 + a_{ij}dx^idx^j$$

Breaking of global hyperbolicity if $\exists x \ s.t. \ b^2 > 1 \ (b^2 = a^{ij} b_i b_j)$

Potential closed time-like curves - not geodesics

- Kerr: globally hyperbolic
- ► Taub–NUT: ∃ CTCs
 - ▶ equivalent to studying charged particles on S² in a Dirac monopole background – QHE [Haldane '83]
 - horizon around the vortex local thermodynamic equilibrium questionable in the chronologically unprotected region

Equivalently recast as Zermelo metrics $(a, b) \leftrightarrow (h, W)$

$$ds^{2} = \frac{1}{1 - W^{2}} \left(-dt^{2} + h_{ij} \left(dx^{i} - W^{i} dt \right) \left(dx^{j} - W^{j} dt \right) \right)$$

Analogue-gravity geometries originating from bulk solutions of Einstein's equations via holography

- ▶ Zermelo metrics are acoustic: null geodesics describe sound propagation in (non-)relativistic fluids moving on geometries $h_{ij} dx^i dx^j$ with velocity field $\mathbf{W} = \mathbf{W}^i \partial_i$ [see e.g. Visser '97]
- ► CTCs & horizons capture physical effects: sound propagation in supersonic-flow regions ($W^2 > 1$)

Similar approaches exist for light propagation in moving media such as (non-)relativistic (conformal) fluids

Highlights

Motivations

Holographic fluids

AdS Kerr & Taub–NUT backgrounds

Alternative interpretations

Outlook

Conformal fluids with vorticity

Class of bulk solutions describing conformal fluids in 2+1 dim with vorticity – backgrounds still to be unravelled for $\ell \geq 3$ and most importantly perturbations to be understood [see e.g. Bakas '08]

- Spectrum of bulk excitations → anyons on the boundary like in exotic BEC phases (under experimental investigation)
- Transport coefficients like shear viscosity

$$\eta \sim \frac{\varepsilon + p}{\Omega} = \frac{sT}{\Omega}$$

(reminiscent of response in magnetized plasmas)

Bonus: alternative analogue interpretation of the boundary theories propagation of sound/light in moving media (Randers vs. Zermelo)

More ambitious

Recast the superfluid phase transition and the appearance of vortices

Combine Kerr and nut charge in AdS Kerr Taub-NUT

- ▶ add a U(1) and a scalar field (order parameter)
- ▶ analyse the phase diagramme (M temperature, $\{a, n\}$ rotation)
- study the formation of a vortex as nut-anti-nut dissociation

Figure: high-*T* vs. low-*T* stable phase

Highlights

Holography in a nutshell

More on AdS Taub-NUT

Sailing in a drift curren

Randers vs. Zermelo pictures and analogue gravity

Holography

Applied beyond the original framework – maximal susy YM in D=4 – usually in the classical gravity approximation without backreaction

▶ Bulk: "asymptotically AdS" d-dim \mathcal{M} (d = D + 1)

$$ds^{2} = \frac{dr^{2}}{k^{2}r^{2}} + k^{2}r^{2}H(kr)\left(-dt^{2} + dx^{2}\right)$$

- ▶ Boundary at $r \to \infty$: $ds^2 \approx \frac{dr^2}{k^2r^2} + k^2r^2g_{(0)\mu\nu}(x)dx^{\mu}dx^{\nu}$
- lacktriangle Dynamical field ϕ with action $I\left[\phi\right]$ and boundary value $\phi_{(0)}(x)$

The basic relation

$$Z_{\text{bulk}}[\phi] = \langle 1 \rangle_{\text{bry. F.T.}}$$

gives access to the data of the boundary theory

$$\left\langle \exp i \int_{\partial \mathcal{M}} \mathrm{d}^D x \sqrt{-g_{(0)}} \delta \phi_{(0)} \, \mathcal{O} \right\rangle_{\mathrm{bry. F.T.}} = Z_{\mathrm{bulk}} [\phi + \delta \phi_{(0)}]$$

- ▶ $\phi_{(0)} \leftrightarrow \mathcal{O}$: conjugate variables
- $\delta\phi_{(0)}$: boundary perturbation \rightarrow source
- $lackbox{$\triangleright$}$ \mathcal{O} : observable functional of $\phi_{(0)}
 ightarrow {
 m response}$

Semi-classically around a classical solution ϕ_{\star}

$$Z_{
m bulk}[\phi] = \exp{-I_{
m E}\left[\phi_{\star}
ight]}$$
 $\left.\left<\mathcal{O}
ight> = \left.rac{\delta I}{\delta\phi_{(0)}}
ight|_{\phi_{\star}}$

Hamiltonian interpretation of $\langle \mathcal{O} \rangle$

on-shell variation

$$\delta I|_{\phi_{\star}} = \int_{\partial \mathcal{M}} \mathsf{d}^D x \, \pi_{(0)} \, \delta \phi_{(0)} \Rightarrow \langle \mathcal{O} \rangle = \pi_{(0)}$$

What is holography? How do we get $\pi_{(0)} = \pi_{(0)} |\phi_{(0)}|$?

$$\partial \mathcal{M} = \begin{cases} \text{boundary } r \to \infty \\ \text{horizon } r_{\mathsf{H}} \end{cases}$$

 $ightharpoonup \phi_{(0)}(x)$ and $\pi_{(0)}(x)$ are independent data set at large r

$$\phi(r) = r^{\Delta - d} \phi_{(0)}(x) + \frac{r^{-\Delta}}{k(2\Delta - D)} \pi_{(0)}(x) + \cdots$$

(non-normalizable and normalizable modes)

ightharpoonup become related if a regularity condition is imposed at $r_{\rm H}$

$$\langle \mathcal{O}
angle = \pi_{(0)} \left[\phi_{(0)}
ight]$$

In summary

Holography: determination of $\langle \mathcal{O} \rangle_{\text{bry. F.T.}}$ – unknown microscopic theory – as a response to a boundary source perturbation $\delta \phi_{(0)}$

- lacktriangle Dynamical field ϕ with action $I\left[\phi
 ight]$ and boundary value $\phi_{(0)}(x)$
- ▶ Momentum $\pi(r,x)$ with boundary value $\pi_{(0)}(x)$
- On-shell variation

$$|\delta I|_{\phi_{\star}} = \int_{\partial \mathcal{M}} \mathsf{d}^D x \, \pi_{(0)} \, \delta \phi_{(0)}$$

▶ Holography: regularity on $r_{\rm H} \Rightarrow \pi_{(0)} = \pi_{(0)} \left[\phi_{(0)}\right] \longrightarrow$ semiclassically

$$\langle \mathcal{O} \rangle = \left. \frac{\delta I}{\delta \phi_{(0)}} \right|_{\phi_{\star}} = \pi_{(0)} \left[\phi_{(0)} \right]$$

Examples

Electromagnetic field in d = 4, D = 3

- ▶ Field A_r , $A_\mu \to A_{(o)\mu}$: boundary electromagnetic field source
- ▶ Momentum $\mathcal{E}_{\mu} \to \mathcal{E}_{(0)\mu}$: $\langle \varrho \rangle$, $\langle j_i \rangle$ response
- ▶ Bulk gauge invariance → continuity equation

Gravitation in d = D + 1

- ► Field $g_{rr}, g_{\mu\nu} \rightarrow g_{(o)\mu\nu}$: boundary metric source
- ▶ Momentum $T_{\mu\nu} \to T_{(o)\mu\nu}$: $\langle T_{(o)\mu\nu} \rangle$ response
- ▶ Bulk diffeomeorphism invariance → conservation equation

Gravity in d = 4

Palatini formulation and 3+1 split [Leigh, Petkou '07, Mansi, Petkou, Tagliabue '08]

$$I_{\mathrm{EH}} = -rac{1}{32\pi G}\int_{\mathcal{M}} \epsilon_{abcd} \left(\mathcal{R}^{ab} - rac{\Lambda}{6} heta^a \wedge heta^b
ight) \wedge heta^c \wedge heta^d$$

 $heta^a$ an orthonormal frame $\mathrm{d} s^2 = \eta_{ab} heta^a heta^b \; (\eta:+-++)$

▶ Vierbein: $\theta^r = N \frac{dr}{kr}$ $\theta^\mu = N^\mu dr + \tilde{\theta}^\mu$ $\mu = 0, 1, 2$

$$\mathrm{d}s^2 = N^2 rac{\mathrm{d}r^2}{k^2 r^2} + \eta_{\mu\nu} \left(N^\mu \mathrm{d}r + ilde{ heta}^\mu
ight) \left(N^
u \mathrm{d}r + ilde{ heta}^
u
ight)$$

 $\qquad \qquad \text{Connection: } \omega^{r\mu} = q^{r\mu} \mathrm{d}r + \mathcal{K}^{\mu} \quad \omega^{\mu\nu} = -\epsilon^{\mu\nu\rho} \left(Q_{\rho} \frac{\mathrm{d}r}{kr} + \mathcal{B}_{\rho} \right) \\ \text{(note: } \Lambda = -3k^2 \text{)}$

Aim: Hamiltonian evolution from data on the boundary $r \to \infty$ Question: what are the field and momentum variables?

• Gauge choice: N=1 and $N^{\mu}=q^{r\mu}=Q_{\rho}=0$

$$\mathrm{d}s^2 = \frac{\mathrm{d}r^2}{k^2r^2} + \eta_{\mu\nu}\tilde{\theta}^{\mu}\tilde{\theta}^{\nu}$$

► Fields and momenta: $\tilde{\theta}^{\mu}$, \mathcal{K}^{μ} , \mathcal{B}_{ρ} one-forms

What are the independent boundary data? Answer in asymptotically AdS: Fefferman—Graham expansion for large r [Fefferman, Graham '85]

$$\begin{array}{lcl} \tilde{\theta}^{\mu}(r,x) & = & kr \, E^{\mu}(x) + \frac{1}{kr} F^{\mu}_{[2]}(x) + \frac{1}{k^2 r^2} F^{\mu}(x) + \cdots \\ \mathcal{K}^{\mu}(r,x) & = & -k^2 r \, E^{\mu}(x) + \frac{1}{r} F^{\mu}_{[2]}(x) + \frac{2}{kr^2} F^{\mu}(x) + \cdots \\ \mathcal{B}^{\mu}(r,x) & = & B^{\mu}(x) + \frac{1}{k^2 r^2} B^{\mu}_{[2]}(x) + \cdots \end{array}$$

Independent 2+1 boundary data: E^{μ} and F^{μ}

Upon canonical transformations (i.e. boundary terms or holographic renormalization)

$$\delta I_{\mathsf{EH}}|_{\mathsf{on-shell}} = \int_{\partial\mathcal{M}} T^{\mu} \wedge \delta \Sigma_{\mu}$$

- $ightharpoonup \Sigma_{\mu} = rac{1}{2} \epsilon_{\mu\nu\rho} E^{
 u} \wedge E^{
 ho}$: field source
- ► $T^{\mu} = \kappa F^{\mu}$: momentum response

Application: Schwartzschild AdS

The bulk data

$$\mathrm{d}s^2 = \frac{\mathrm{d}\tilde{r}^2}{V(\tilde{r})} - V(\tilde{r})\mathrm{d}t^2 + \tilde{r}^2\left(\mathrm{d}\vartheta^2 + \sin^2\vartheta\,\mathrm{d}\varphi^2\right)$$

- $V(r) = 1 + k^2 \tilde{r}^2 \frac{2M}{\tilde{r}}$

The Fefferman–Graham expansion

$$\begin{array}{lcl} \theta^t & = & \sqrt{V(\tilde{r})} \mathrm{d}t = \left(kr + \frac{1}{4kr} - \frac{2M}{3kr^2} + \mathrm{O}\left(\frac{1}{r^3}\right)\right) \mathrm{d}t \\ \theta^\vartheta & = & \tilde{r} \, \mathrm{d}\vartheta = \left(r - \frac{1}{4k^2r} + \frac{M}{3k^2r^2} + \mathrm{O}\left(\frac{1}{r^3}\right)\right) \mathrm{d}\vartheta \\ \theta^\varphi & = & \tilde{r} \sin\vartheta \, \mathrm{d}\varphi = \left(r - \frac{1}{4k^2r} + \frac{M}{3k^2r^2} + \mathrm{O}\left(\frac{1}{r^3}\right)\right) \sin\vartheta \, \mathrm{d}\varphi \end{array}$$

The boundary data

- ► coframe: $E^t = dt$ $E^\theta = \frac{d\theta}{k}$ $E^\varphi = \frac{\sin\theta d\varphi}{k}$
- ► stress current: $F^t = -\frac{2Mk}{3} dt$ $F^\theta = \frac{M}{3} d\vartheta$ $F^\varphi = \frac{M}{3} \sin \vartheta d\varphi$

The boundary metric

$$\begin{array}{ll} \mathrm{d} s_{\mathrm{bry.}}^2 &= \eta_{\mu\nu} E^\mu E^\nu = g_{(0)\mu\nu} \mathrm{d} x^\mu \mathrm{d} x^\nu \\ &= -\mathrm{d} t^2 + \frac{1}{k^2} \left(\mathrm{d} \vartheta^2 + \sin^2 \vartheta \, \mathrm{d} \varphi^2 \right) \end{array}$$

- ► Einstein universe
- $ightharpoonup e_t = \partial_t$
- $\nabla e_t e_t = 0$: observers at rest are inertial

The boundary stress tensor $\kappa F^{\mu}e_{\mu}$

$$T = T_{\mu\nu}E^{\mu}E^{\nu} = \frac{\kappa Mk}{3} \left(2(E^{t})^{2} + (E^{\theta})^{2} + (E^{\phi})^{2} \right)$$

- ▶ traceless: conformal fluid with $\varepsilon = 2p = \frac{2\kappa Mk}{3}$
- ▶ velocity field $\mathbf{u} = e_t = \partial_t$: comoving & inertial
- ▶ velocity one-form: $u = -E^t = -dt$

Static fluid without expansion, shear or vorticity

Notes

The fluid may be perfect or not

$$T_{\mathsf{visc}} = -\left(2\eta\sigma^{\mu\nu} + \zeta h^{\mu\nu}\Theta
ight)e_{\mu}\otimes e_{
u}$$

 $T_{\text{visc}} = 0$ if the congruence is shear- and expansion-less

A shear- and expansion-less isolated fluid is geodesic if [Caldarelli et al. '08]

$$\nabla_{\mathbf{u}}\varepsilon = 0$$
$$\nabla p + u\nabla_{\mathbf{u}}p = 0$$

fulfilled here with ε , p csts.

Only $\delta g_{(o)\mu\nu}$ give access to η and ζ via $\langle \delta T_{(o)\mu\nu} \rangle$

More general examples

We can exhibit backgrounds with stationary boundaries and fluids

$$T = (\varepsilon + \rho)\mathbf{u} \otimes \mathbf{u} + \rho \eta^{\mu\nu} e_{\mu} \otimes e_{\nu}$$

- ▶ $\varepsilon = 2p$: conformal
- $\nabla_{\mathbf{u}}\mathbf{u}=0$: inertial
- $\mathbf{u} = \mathbf{e}_0$: at rest (comoving)

On vector-field congruences [Ehlers '61]

Vector field **u** with $u_{\mu}u^{\mu}=-1$ and space–time variation $abla_{\mu}u_{\nu}$

$$abla_{\mu}u_{
u}=-u_{\mu}a_{
u}+\sigma_{\mu
u}+rac{1}{D-1}\Theta h_{\mu
u}+\omega_{\mu
u}$$

- $h_{\mu\nu} = u_{\mu}u_{\nu} + g_{\mu\nu}$: projector/metric on the orthogonal space
- $ightharpoonup a_{\mu} = u^{\nu} \nabla_{\nu} u_{\mu}$: acceleration transverse
- $ightharpoonup \sigma_{\mu\nu}$: symmetric traceless part shear
- $ightharpoonup \Theta =
 abla_{\mu} u^{\mu}$: trace expansion
- $ightharpoonup \omega_{\mu
 u}$: antisymmetric part vorticity

$$\omega = \frac{1}{2}\omega_{\mu\nu}\mathsf{d} x^{\mu}\wedge\mathsf{d} x^{\nu} = \frac{1}{2}(\mathsf{d} u + u\wedge \mathsf{a})$$

Highlights

Holography in a nutshell

More on AdS Taub-NUT

Sailing in a drift current

Randers vs. Zermelo pictures and analogue gravity

AdS Taub–NUT: the nut charge

Reminder: the bulk data [Taub '51, Newman, Tamburino, Unti '63]

$$\mathrm{d}s^2 = \frac{\mathrm{d}\tilde{r}^2}{V(\tilde{r})} - V(\tilde{r}) \left[\mathrm{d}t - 2n\cos\vartheta\,\mathrm{d}\varphi \right]^2 + \rho^2 \left[\mathrm{d}\vartheta^2 + \sin^2\vartheta\,\mathrm{d}\varphi \right]^2$$

$$V(\tilde{r}) = \Delta/\rho^2 \text{ with}$$

$$\Delta = (\tilde{r}^2 - n^2) \left(1 + k^2 \left(\tilde{r}^2 + 3n^2 \right) \right) + 4k^2 n^2 \tilde{r}^2 - 2M\tilde{r}$$

$$\rho^2 = \tilde{r}^2 + n^2$$

The Fefferman–Graham expansion with r s.t. $dr/kr = d\tilde{r}/\sqrt{V(\tilde{r})}$

▶ boundary coframe and frame

$$E^t = \mathrm{d}t - b$$
 $E^{\theta} = \frac{\mathrm{d}\theta}{k}$ $E^{\varphi} = \frac{\sin\theta\,\mathrm{d}\varphi}{k}$ $e_t = \partial_t$ $e_{\theta} = k\,\partial_{\theta}$ $e_{\varphi} = -\frac{2kn(1-\cos\theta)}{\sin\theta}\partial_t + \frac{k}{\sin\theta}\partial_{\varphi}$ $b = -2n(1-\cos\theta)\mathrm{d}\varphi$

boundary stress current

$$F^t = -\frac{2Mk}{3}E^t$$
 $F^\theta = \frac{Mk}{3}E^\theta$ $F^\varphi = \frac{Mk}{3}E^\varphi$

For comparison: AdS Kerr

The Fefferman–Graham expansion of θ^t , θ^{ϑ} , θ^{φ}

boundary orthonormal coframe and frame

$$\begin{split} E^t &= \mathrm{d}t - b \quad E^\vartheta = \frac{\mathrm{d}\vartheta}{k\sqrt{\Delta_\vartheta}} &\quad E^\varphi = \frac{\sqrt{\Delta_\vartheta}\sin\vartheta\,\mathrm{d}\varphi}{k\Xi} \\ e_t &= \partial_t &\quad e_\vartheta = k\sqrt{\Delta_\vartheta}\,\partial_\vartheta \quad e_\varphi = \frac{ka\sin\vartheta}{\sqrt{\Delta_\vartheta}}\partial_t + \frac{k\Xi}{\sin\vartheta\sqrt{\Delta_\vartheta}}\partial_\varphi \\ b &= \frac{a\sin^2\vartheta}{\Xi}\mathrm{d}\varphi \end{split}$$

boundary stress current

$$F^t = -\frac{2Mk}{3}E^t$$
 $F^\theta = \frac{Mk}{3}E^\theta$ $F^\varphi = \frac{Mk}{3}E^\varphi$

The boundary metric and stress tensor

$$\begin{split} \mathrm{d} s_{\text{bry.}}^2 &= \eta_{\mu\nu} E^\mu E^\nu = g_{(0)\mu\nu} \mathrm{d} x^\mu \mathrm{d} x^\nu \\ &= - \left(\mathrm{d} t + 2 n (1 - \cos \vartheta) \mathrm{d} \varphi \right)^2 + \frac{1}{k^2} \left(\mathrm{d} \vartheta^2 + \sin^2 \vartheta \mathrm{d} \varphi^2 \right) \\ T &= T_{\mu\nu} E^\mu E^\nu = \frac{\kappa M k}{3} \left(2 (E^t)^2 + (E^\vartheta)^2 + (E^\varphi)^2 \right) \end{split}$$

Fluid interpretation: perfect-like stress tensor

- conformal fluid with $\varepsilon = 2p = \frac{2\kappa Mk}{3}$
- ▶ velocity field $\mathbf{u} = e_t = \partial_t$: comoving & inertial

Fluid without expansion and shear but with vorticity

$$\omega = \frac{1}{2} db = -n \sin \vartheta d\vartheta \wedge d\varphi = -k^2 n E^{\vartheta} \wedge E^{\varphi}$$

How does vorticity i.e. rotation get manifest?

Boundary geometries are stationary of Randers form [Randers '41]

$$ds^2 = -\left(dt - b\right)^2 + a_{ij}dx^idx^j$$

and the fluid is at rest: $\mathbf{u} = \partial_t$

- ▶ $\nabla_{\partial_t}\partial_t = 0$: the fluid is inertial and carries vorticity $\omega = \frac{1}{2}db$
- $ightharpoonup
 abla_{\partial_t} \partial_i = \omega_{ij} a^{jk} \left(\partial_k + b_k \partial_t \right)$: frame and fluid dragging

Other privileged frames exist where the observers experience differently the rotation of the fluid -e.g. Zermelo dual frame

AdS Taub-NUT: more on the boundary and CTCs

Homogenous boundary space-time: Lorentzian squashed 3-sphere

$$\begin{array}{ll} \mathrm{d}s_{\mathrm{bry.}}^2 &= \frac{1}{k^2} \left((\sigma^1)^2 + \left(\sigma^2 \right)^2 \right) - 4 n^2 \left(\sigma^3 \right)^2 \\ &= - \left(\mathrm{d}t - 2 n (\cos \vartheta - 1) \mathrm{d}\varphi \right)^2 + \frac{1}{k^2} \left(\mathrm{d}\vartheta^2 + \sin^2 \vartheta \mathrm{d}\varphi^2 \right) \end{array}$$

- Stationary foliation in 2-spheres with a time fiber
- Gödel-like space sourced by dust distribution [classification in Raychaudhuri et al. '80, Rebouças et al. '83]
- ▶ CTCs of angular opening $< 2\vartheta_0 \; (g_{\varphi\varphi}(\vartheta_0) = 0)$ no closed time-like geodesics
- ▶ Special point: south pole of the 2-sphere track of the Misner string – can be moved anywhere by homogeneity

Around the poles: Som-Raychaudhuri and cosmic spinning string

North pole: Som—Raychaudhuri space — sourced by rigidly rotating charged dust [Som, Raychaudhuri '68]

$$ds^2 = -\left(dt + \Omega\varrho^2 d\varphi\right)^2 + \varrho^2 d\varphi^2 + d\varrho^2$$

$$\Omega = k^2 n$$
 and $\varrho = \theta/k$

► South pole: spinning cosmic string [vortex in analogue gravity]

$$ds^2 = -(dt + Ad\varphi)^2 + \varrho^2 d\varphi^2 + d\varrho^2$$

$$A=4n-\Omega \varrho^2$$
 and $\varrho=\pi-\vartheta/k$

Around the poles of Kerr: Som–Raychaudhuri with $\Omega = -k^2 a$

Kerr vs. Taub-NUT "rotation" [Dowker '74, Bonnor '75, Hunter '98]

- ► Kerr: rigid rotation with angular momentum and velocity
 - ▶ horizon at $r = r_+$: fixed locus of $\partial_t + \Omega_H \partial_{\varphi} \rightarrow \text{bolt}$
 - ▶ pair of nut–anti-nut at $r=r_+$, $\vartheta=0$, π (fixed points of ∂_{φ}) connected by a Misner string [Argurio, Dehouck '09]

asymptotically $\Omega_{\infty} = -ak^2$

- ► Taub-NUT: "non-rigid rotation" with angular momentum distribution along the Misner string (vanishing integral) asymptotically:
 - ▶ north pole: angular velocity $\Omega_{\infty} = nk^2$
 - south pole: no angular velocity

Highlights

Holography in a nutshell

More on AdS Taub-NUT

Sailing in a drift current

Randers vs. Zermelo pictures and analogue gravity

The Zermelo problem

What is the minimal-time trajectory of a non-relativistic ship sailing on a space with positive-definite metric $dt^2 = h_{ij}dx^idx^j$ and velocity $U^i = dx^i/dt$ s.t. $\|\mathbf{U}\|^2 = 1$?

time functional is

$$T = \int \mathrm{d}t \, \sqrt{h_{ij} \, U^i \, U^j}$$

▶ minimization is realized with geodesics of dt^2

What happens in the presence of a lateral drifting flow $\mathbf{W} = W^i \partial_i$ ("wind" or "tide")? [Zermelo '31]

- ightharpoonup velocity: $U^i = \frac{dx^i}{dt} = V^i + W^i$
 - U: vector tangent to the trajectory
 - ▶ V: "propelling" velocity with $\|\mathbf{V}\|^2 = 1$
 - no longer aligned with the trajectory
 - instantaneous navigation road velocity of the ship with respect to a local frame dragged by the drifting flow
- ▶ norm: $U^2 = 1 + W^2 + 2V \cdot W$

time functional is

$$T = \int dt \left(\sqrt{\frac{U^2}{1 - W^2} + \left(\frac{W \cdot U}{1 - W^2}\right)^2} - \frac{W \cdot U}{1 - W^2} \right)$$
$$= \int dt \left(\sqrt{\left(\frac{h_{ij}}{\lambda} + \frac{W_i W_j}{\lambda^2}\right) U^i U^j} - \frac{W_k U^k}{\lambda} \right)$$

with $\lambda = 1 - \mathbf{W}^2$

 minimization is realized with null geodesics of the Zermelo metric

$$ds^{2} = \frac{1}{\lambda} \left(-dt^{2} + h_{ij} \left(dx^{i} - W^{i} dt \right) \left(dx^{j} - W^{j} dt \right) \right)$$

Highlights

Holography in a nutshell

More on AdS Taub-NUT

Sailing in a drift current

Randers vs. Zermelo pictures and analogue gravity

Note: the time functional is of Randers type with Finsler Lagrangian

$$T = \int \mathrm{d}t \, F(x^i, U^i)$$

with

$$F(x^i, U^i) = \sqrt{a_{ij}U^iU^j + b_iU^i}$$

and

$$a_{ij} = rac{h_{ij}}{\lambda} + rac{W_i W_j}{\lambda^2} \quad b_i = -rac{h_{ij} W^j}{\lambda}$$

the data of the Randers form

Equivalently Randers stationary forms are recast as Zermelo metrics

$$ds^{2} = \frac{1}{\lambda} \left(-dt^{2} + h_{ij} \left(dx^{i} - W^{i} dt \right) \left(dx^{j} - W^{j} dt \right) \right)$$

with

$$h_{ij} = \lambda (a_{ij} - b_i b_j)$$

$$\lambda = 1 - b_i b_j a^{ij}$$

$$W^i = -\frac{a^{ij} b_j}{\lambda}$$

Null geodesics in Zermelo metric are minimal-time curves for sailing in the base space of metric $dt^2 = h_{ij}dx^idx^j$ under the influence of a drifting "wind" $\mathbf{W} = W^i\partial_i$ [Zermelo '31]

Analogue gravity picture

Zermelo metrics are acoustic [see e.g. Visser '97, Chapline, Mazur '04]

Propagation in D-1-dim moving media

Waves or rays in D-dim "analogue" curved space-times

$$ds^{2} = \frac{\varrho}{c_{s}} \left(-c_{s}^{2} dt^{2} + h_{ij} \left(dx^{i} - W^{i} dt \right) \left(dx^{j} - W^{j} dt \right) \right)$$

Null geodesics describe sound propagation in non-relativistic fluids moving on geometries $h_{ij}dx^idx^j$ with velocity fields $\mathbf{W} = W^i\partial_i$

- ▶ inviscid, isolated, barotropic $(dh = dp/\varrho)$
- ▶ local mass density ϱ and pressure p
- local sound velocity $c_s = 1/\sqrt{\partial \rho/\partial \rho}$

Alternatively the whole boundary set up could be a gravitational analogue of sound propagating in moving fluids or light in moving dielectrics – acoustic/optical black holes

As such our examples fall in a larger class of backgrounds studied in analogue systems [Gibbons et al. '08] — here equipped with a stress tensor

Randers & Zermelo backgrounds address the problems of

- motion of charged particles in magnetic fields
- sailing in the presence of a drift force
- sound propagation in moving media

and are dual to each other

Where are we?

Exploratory tour of some properties of conformal holographic fluids moving in non-trivial gravitational backgrounds

- inertial
- carrying vorticity

Vorticity appears in various fashions

- ► Kerr → solid rotation on the boundary: dipole
- ► Taub-NUT → vortex on the boundary: monopole

More general multipoles?

More general "multipolar" vortices on the boundary

$$b = 2(-1)^{\ell} \alpha \left(1 - P_{\ell}(\cos \vartheta)\right) d\varphi$$

$$\omega = (-1)^{\ell} \alpha P'_{\ell}(\cos \vartheta) \sin \vartheta d\vartheta \wedge d\varphi$$

▶ for odd ℓ there is indeed a vortex around the track of the Misner string at the south pole with a nut-like charge

$$\alpha = -\frac{1}{4\pi} \int \omega$$

▶ for even ℓ the Misner string does not reach the poles and the total charge vanishes – e.g. Kerr as a dipole with $\alpha = a/3\Xi$

Bulk realization for $\ell \geq 3$: generalization of Weyl multipoles [Weyl '19] $(\ell = 0 \text{ is Schwarzschild with } dt \rightarrow dt + d\phi)$ [Work in progress]

Bonus

Alternative analogue interpretation of the boundary backgrounds: propagation of sound/light in moving media (Randers & Zermelo)

- provides holographic AdS/analogue-gravity correspondence
- evades the CTCs caveats within supersonic/superluminal flows

Bulk for general Randers-Papaterou geometries?