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Framework

AdS/CFT→ QCD & plethora of strongly coupled systems

I Superconductors and superfluids [Hartnoll, Herzog, Horowitz ’08]

I Quantum-Hall fluids [e.g. Dolan et al. ’10]

Holography also applied to hydrodynamics i.e. to a regime of local
thermodynamical equilibrium for the boundary theory

I Conjectured bound η/s ≥ h̄/4πkB – saturated in holographic
fluids (nearly-perfect) [Policastro, Son, Starinets ’01, Baier et al. ’07, Liu et al. ’08]

I More systematic description of fluid dynamics [many authors since ’08 –

originated by Minwalla et al.]



Why vorticity?

Developments in ultra-cold-atom physics: new twists in the physics
of near-perfect neutral fluids fast rotating in normal or superfluid
phase→ new challenges in strong-coupling regimes / exotic phases
Below BEC-transition: rotation (∼ 100Hz) creates networks of
vortices

He4 ā ∼ 10−4 µm, Tc ≈ 2.17K, ξ ∼ 10−4 µm, av ∼ 1mm
⇒ a few highly populated vortices (→ 1995)

BEC ā ∼ 0.25 µm, Tc ∼ 100 nK, ξ ∼ 0.5 µm, av ∼ 2 µm
⇒ 100 to 200 vortices (1995 →)



Dilute rotating Bose gases in harmonic traps – potentially
fractional-quantum-Hall liquids or topological (anyonic) superfluids
[e.g. Cooper et al. ’10, Chu et al. ’10, Dalibard et al. ’11]

Figure: Trap, rotation and Landau levels – toward a strongly coupled
FQH phase for small filling factor (ν = particles/vortices ≈ 1)

Foreseeable progress in the measurement of transport coefficients calls
for a better understanding of the strong-coupling dynamics of vortices



Developments in analogue-gravity systems for the description of
sound/light propagation in moving media [Unruh ’81; review by M. Visser et al. ’05]

Propagation in D − 1-dim moving media

m

Null waves or rays in D-dim “analogue” curved space–times

Holographic description of the D-dim set up?



Sometimes in supersonic/superluminal vortex flows: vmedium > vwave

I Horizons & optical or acoustic black holes

Figure: White hole’s horizon in analogue gravity

I Hawking radiation [Belgiorno et al. ’10, Cacciatori et al. ’10]

I Vortices and Aharonov–Bohm effect for neutral atoms [Leonhardt

et al. ’00, Barcelo et al. ’05]



Aim

Use AdS/CFT to describe rotating fluids viewed
I either as genuine rotating near-perfect Bose or Fermi gases
I or as analogue-gravity set ups for acoustics/optics in rotating

media [see also Schäfer et al. ’09, Das et al. ’10]
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Holographic backgrounds

Applied beyond the original framework – maximal susy YM in D = 4
– usually in the classical gravity approximation without backreaction

I Bulk with Λ = −3k2: asymptotically AdS d = D + 1 dimM
I Boundary at r → ∞: asymptotic coframe E µ µ = 0, . . . ,D − 1

ds2 ≈ dr2

k2r2
+ k2r2ηµνE µE ν =

dr2

k2r2
+ k2r2g(0)µνdx

µdxν

Holography: determination of 〈O〉bry. F.T. as a response to a
boundary source perturbation δφ(0) (momentum vs. field in
Hamiltonian formalism – related via some regularity condition)



Where is the fluid?

Via holography: boundary field theory at finite T and µ

Fluid ≡ hydrodynamic approximation of the boundary theory
I at stationarity – local thermodynamic equilibrium
I disturbed → response – alternative to kinetic theory

Fluid described in terms of u, ε, p,T in Tµν s.t. ∇µT µν = 0



Pure gravity

Holographic data

I Field grr , gµν → g(o)µν: boundary metric – source
I MomentumTrr ,Tµν → T(o)µν: 〈T(o)µν〉 – response

Palatini formulation and 3+ 1 split [Leigh, Petkou ’07, Mansi, Petkou, Tagliabue ’08]

θa: orthonormal coframe (η : +−++)

ds2 = ηabθaθb

with a gauge choice s.t. θr = dr
kr , θµ = θ

µ
νdxν, µ = 0, 1, 2



Holography: Hamiltonian evolution from data on the boundary –
captured in Fefferman–Graham expansion for large r [Fefferman, Graham ’85]

θµ(r , x) = kr E µ(x) +
1
kr

F µ

[2](x) +
1

k2r2
F µ(x) + · · ·

Independent 2+ 1 boundary data: vector-valued 1-forms E µ and F µ

I E µ: boundary orthonormal coframe – allows to determine
ds2bry. = g(0)µνdxµdxν = ηµνE µE ν

I F µ: stress-tensor current one-form – allows to construct the
boundary stress tensor (κ = 3k/8πG)

T = κF µeµ = T µ
νE ν ⊗ eµ
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AdS Kerr: the solid rotation

The bulk data

ds2 = (θr )2 − (θt)2 + (θϑ)2 + (θϕ)2

= dr̃2
V (r̃ ,ϑ) − V (r̃ , ϑ)

[
dt − a

Ξ sin2 ϑ dϕ
]2

+ ρ2

∆ϑ
dϑ2 + sin2 ϑ∆ϑ

ρ2

[
a dt − r2+a2

Ξ dϕ
]2

V (r̃ , ϑ) = ∆/ρ2 with

∆ =
(
r̃2 + a2

) (
1+ k2r̃2

)
− 2Mr̃

ρ2 = r̃2 + a2 cos2 ϑ
∆ϑ = 1− k2a2 cos2 ϑ
Ξ = 1− k2a2 > 0



The boundary metric – following FG expansion

ds2bry. = ηµνE µE ν = g(0)µνdxµdxν

= −
(
dt − a sin2 ϑ

Ξ dϕ
)2

+ 1
k2∆ϑ

(
dϑ2 +

(
∆ϑ sin ϑ

Ξ

)2
dϕ2

)

I spatial section: squashed 2-sphere
I ∇∂t ∂t = 0: observers at rest are inertial
I note: conformal to Einstein universe in a rotating frame

(requires (ϑ, ϕ)→ (ϑ′, ϕ′))



The boundary stress tensor κF µeµ [see also Caldarelli, Dias, Klemm ’08]

T = TµνE µE ν =
κMk
3

(
2(E t)2 + (E ϑ)2 + (E ϕ)2

)
perfect-fluid-like (T = (ε + p)u ⊗ u + pηµνE µ ⊗ E ν)

I traceless: conformal fluid with ε = 2p = 2κMk/3 ∝ T 2

I velocity field u = et = ∂t : comoving & inertial

Vorticity but no expansion or shear – the viscosity η, ζ is not felt

ω =
1
2
du =

1
2
db =

a cos ϑ sin ϑ

Ξ
dϑ ∧ dϕ = k2a cos ϑE ϑ ∧ E ϕ

Reminder: u → ∇µuν → {aµ, σµν, Θ, ωµν}



AdS Taub–NUT: the nut charge

The bulk data [Taub ’51, Newman, Tamburino, Unti ’63]

ds2 = (θr )2 − (θt)2 + (θϑ)2 + (θϕ)2

= dr̃2
V (r̃ ) − V (r̃) [dt − 2n cos ϑ dϕ]2 + ρ2

[
dϑ2 + sin2 ϑ dϕ

]2
V (r̃) = ∆/ρ2 with

∆ =
(
r̃2 − n2

) (
1+ k2

(
r̃2 + 3n2

))
+ 4k2n2r̃2 − 2Mr̃

ρ2 = r̃2 + n2

No rotation parameter a but nut charge n – one of the most peculiar
solutions to Einstein’s Eqs. [Misner ’63]



Parenthesis: Kerr vs. Taub–NUT (Lorentzian time)

Taub–NUT: rich geometry – foliation over squashed 3-spheres with
SU(2)× U(1) isometry (homogeneous and axisymmetric)

I horizon at r = r+ 6= n: 2-dim fixed locus of −2n∂t → bolt
(Killing becoming light-like)

I extra fixed point of ∂ϕ − 4n∂t on the horizon at ϑ = π

nut at r = r+, ϑ = π from which departs a Misner string
(coordinate singularity if t � t + 8πn) [Misner ’63]

Kerr: stationary (rotating) black hole

I horizon at r = r+: fixed locus of ∂t + ΩH∂ϕ → bolt
I pair of nut–anti-nut at r = r+, ϑ = 0, π (fixed points of ∂ϕ)

connected by a Misner string [Hunter ’98, Manko et al. ’09, Argurio et al. ’09]



Pictorially: nuts and Misner strings

Figure: Kerr vs. Taub–NUT

How is Taub–NUT related to rotation?



Back to Taub–NUT

Following FG→ boundary metric and stress tensor

ds2bry. = ηµνE µE ν = g(0)µνdxµdxν

= − (dt − 2n(cos ϑ− 1)dϕ)2 + 1
k2
(
dϑ2 + sin2 ϑdϕ2)

T = TµνE µE ν =
κMk
3

(
2(E t)2 + (E ϑ)2 + (E ϕ)2

)
Fluid interpretation: perfect-like stress tensor

I conformal with ε = 2p = 2κMk/3

I velocity field u = et = ∂t : comoving & inertial

Same fluid: no expansion, no shear but vorticity



The vorticity on the boundary of AdS Taub–NUT

b = −2n(1− cos ϑ)dϕ
ω = 1

2db = −n sin ϑ dϑ ∧ dϕ = −nk2E ϑ ∧ E ϕ

Dirac-monopole-like vortex (“hedgehog” or homogeneous)

Kerr produces a dipole without nut charge:
∫

ω = 0 – solid rotation
Taub–NUT is well designed to describe “monopolar” vortices

∃ multipolar b yet to be unravelled in the bulk [Weyl 1919]



Remark

Rotation in flat space (spherical coordinates)
Data: ~v ~ω = 1/2~∇×~v

I Solid rotation (` = 2):
I ~v = Ω∂ϕ and ‖~v‖ = Ωr sin ϑ (regular)
I ~ω = Ω cos ϑ∂r − Ω sin ϑ

r ∂ϑ = Ω∂z (uniform)
I Ordinary vortex (` = 0):

I ~v = β

r2 sin2 ϑ
∂ϕ and ‖~v‖ = β

r sin ϑ (singular at ϑ = 0, π)
I ~ω = 0 (irrotational) – up to a δ-function contribution

I Dirac-monopole vortex (` = 1):
I ~v = α 1−cos ϑ

r2 sin2 ϑ
∂ϕ and ‖~v‖ = α 1−cos ϑ

r sin ϑ (singular at ϑ = π)
I ~ω = α

2r2 ∂r (hedgehog)
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Randers forms and Zermelo metrics [Zermelo ’31, Randers ’41]

The boundary geometries describing vorticity are stationary metrics
of the Randers–Papapetrou form

ds2 = − (dt − b)2 + aijdx idx j

Breaking of global hyperbolicity if ∃x s.t. b2 > 1 (b2 = aijbibj )
Potential closed time-like curves – not geodesics

I Kerr: globally hyperbolic
I Taub–NUT: ∃ CTCs

I equivalent to studying charged particles on S2 in a Dirac
monopole background – QHE [Haldane ’83]

I horizon around the vortex – local thermodynamic equilibrium
questionable in the chronologically unprotected region



Equivalently recast as Zermelo metrics (a, b)↔ (h,W )

ds2 =
1

1−W 2

(
−dt2 + hij

(
dx i −W idt

) (
dx j −W jdt

))
Analogue-gravity geometries originating from bulk solutions of
Einstein’s equations via holography

I Zermelo metrics are acoustic: null geodesics describe sound
propagation in (non-)relativistic fluids moving on geometries
hijdx idx j with velocity field W = W i ∂i [see e.g. Visser ’97]

I CTCs & horizons capture physical effects: sound propagation
in supersonic-flow regions (W 2 > 1)

Similar approaches exist for light propagation in moving media such
as (non-)relativistic (conformal) fluids
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Conformal fluids with vorticity

Class of bulk solutions describing conformal fluids in 2+ 1 dim with
vorticity – backgrounds still to be unravelled for ` ≥ 3 and most
importantly perturbations to be understood [see e.g. Bakas ’08]

I Spectrum of bulk excitations → anyons on the boundary – like
in exotic BEC phases (under experimental investigation)

I Transport coefficients like shear viscosity

η ∼ ε + p
Ω

=
sT
Ω

(reminiscent of response in magnetized plasmas)

Bonus: alternative analogue interpretation of the boundary theories
propagation of sound/light in moving media (Randers vs. Zermelo)



More ambitious
Recast the superfluid phase transition and the appearance of vortices
Combine Kerr and nut charge in AdS Kerr Taub–NUT

I add a U(1) and a scalar field (order parameter)
I analyse the phase diagramme (M temperature, {a, n} rotation)
I study the formation of a vortex as nut–anti-nut dissociation

high T

low T

Figure: high-T vs. low-T stable phase
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Holography

Applied beyond the original framework – maximal susy YM in D = 4
– usually in the classical gravity approximation without backreaction

I Bulk: “asymptotically AdS” d -dimM (d = D + 1)

ds2 =
dr2

k2r2
+ k2r2H(kr)

(
−dt2 + dx2

)
I Boundary at r → ∞: ds2 ≈ dr2

k2r2 + k2r2g(0)µν(x)dxµdxν

I Dynamical field φ with action I [φ] and boundary value φ(0)(x)



The basic relation
Zbulk[φ] = 〈1〉bry. F.T.

gives access to the data of the boundary theory

〈
exp i

∫
∂M

dDx
√
−g(0)δφ(0)O

〉
bry. F.T.

= Zbulk[φ + δφ(0)]

I φ(0) ↔ O: conjugate variables
I δφ(0): boundary perturbation → source
I O: observable functional of φ(0) → response



Semi-classically around a classical solution φ?

Zbulk[φ] = exp−IE [φ?]

〈O〉 =
δI

δφ(0)

∣∣∣∣∣
φ?

Hamiltonian interpretation of 〈O〉

I π = ∂L
∂∂r φ ⇒ I =

∫
dr
∫
dDx

[
π∂r φ−H(π, φ, ∂µφ)

]
I on-shell variation

δI |φ? =
∫

∂M
dDx π(0) δφ(0) ⇒〈O〉 = π(0)



What is holography? How do we get π(0) = π(0)

[
φ(0)

]
?

∂M =

{
boundary r → ∞
horizon rH

I φ(0)(x) and π(0)(x) are independent data set at large r

φ(r) = r∆−d φ(0)(x) +
r−∆

k(2∆−D)
π(0)(x) + · · ·

(non-normalizable and normalizable modes)
I become related if a regularity condition is imposed at rH

〈O〉 = π(0)

[
φ(0)

]



In summary

Holography: determination of 〈O〉bry. F.T. – unknown microscopic
theory – as a response to a boundary source perturbation δφ(0)

I Dynamical field φ with action I [φ] and boundary value φ(0)(x)
I Momentum π(r , x) with boundary value π(0)(x)
I On-shell variation

δI |φ? =
∫

∂M
dDx π(0) δφ(0)

I Holography: regularity on rH ⇒ π(0) = π(0)

[
φ(0)

]
−→

semiclassically

〈O〉 =
δI

δφ(0)

∣∣∣∣∣
φ?

= π(0)

[
φ(0)

]



Examples

Electromagnetic field in d = 4,D = 3

I Field Ar ,Aµ → A(o)µ: boundary electromagnetic field – source
I Momentum Eµ → E(0)µ: 〈$〉, 〈ji 〉 – response
I Bulk gauge invariance → continuity equation

Gravitation in d = D + 1

I Field grr , gµν → g(o)µν: boundary metric – source
I MomentumTµν → T(o)µν: 〈T(o)µν〉 – response
I Bulk diffeomeorphism invariance → conservation equation



Gravity in d = 4

Palatini formulation and 3+ 1 split [Leigh, Petkou ’07, Mansi, Petkou, Tagliabue ’08]

IEH = − 1
32πG

∫
M

εabcd

(
Rab − Λ

6
θa ∧ θb

)
∧ θc ∧ θd

θa an orthonormal frame ds2 = ηabθaθb (η : +−++)
I Vierbein: θr = N dr

kr θµ = Nµdr + θ̃µ µ = 0, 1, 2

ds2 = N2 dr2

k2r2
+ ηµν

(
Nµdr + θ̃µ

) (
Nνdr + θ̃ν

)
I Connection: ωrµ = qrµdr +Kµ ωµν = −εµνρ

(
Qρ

dr
kr + Bρ

)
(note: Λ = −3k2)



Aim: Hamiltonian evolution from data on the boundary r → ∞
Question: what are the field and momentum variables?

I Gauge choice: N = 1 and Nµ = qrµ = Qρ = 0

ds2 =
dr2

k2r2
+ ηµν θ̃µ θ̃ν

I Fields and momenta: θ̃µ,Kµ,Bρ one-forms



What are the independent boundary data? Answer in asymptotically
AdS: Fefferman–Graham expansion for large r [Fefferman, Graham ’85]

θ̃µ(r , x) = kr E µ(x) + 1
kr F

µ

[2](x) + 1
k2r2F

µ(x) + · · ·
Kµ(r , x) = −k2r E µ(x) + 1

r F
µ

[2](x) + 2
kr2F

µ(x) + · · ·
Bµ(r , x) = Bµ(x) + 1

k2r2B
µ

[2](x) + · · ·

Independent 2+ 1 boundary data: E µ and F µ

Upon canonical transformations (i.e. boundary terms or holographic
renormalization)

δIEH|on−shell =
∫

∂M
T µ ∧ δΣµ

I Σµ = 1
2εµνρE ν ∧ E ρ: field – source

I T µ = κF µ: momentum – response



Application: Schwartzschild AdS

The bulk data

ds2 =
dr̃2

V (r̃)
− V (r̃)dt2 + r̃2

(
dϑ2 + sin2 ϑ dϕ2)

I V (r) = 1+ k2r̃2 − 2M/r̃

I θr = dr̃/
√

V (r̃ ) = dr/kr

The Fefferman–Graham expansion

θt =
√

V (r̃)dt =
(
kr + 1

4kr −
2M
3kr2 +O

( 1
r3
))

dt
θϑ = r̃ dϑ =

(
r − 1

4k2r + M
3k2r2 +O

( 1
r3
))

dϑ

θϕ = r̃ sin ϑ dϕ =
(
r − 1

4k2r + M
3k2r2 +O

( 1
r3
))

sin ϑ dϕ



The boundary data

I coframe: E t = dt E ϑ = dϑ
k E ϕ = sin ϑ dϕ

k

I stress current: F t = − 2Mk
3 dt F ϑ = M

3 dϑ F ϕ = M
3 sin ϑ dϕ

The boundary metric

ds2bry. = ηµνE µE ν = g(0)µνdxµdxν

= −dt2 + 1
k2
(
dϑ2 + sin2 ϑ dϕ2)

I Einstein universe
I et = ∂t

I ∇etet = 0: observers at rest are inertial



The boundary stress tensor κF µeµ

T = TµνE µE ν =
κMk
3

(
2(E t)2 + (E ϑ)2 + (E ϕ)2

)
I traceless: conformal fluid with ε = 2p = 2κMk/3

I velocity field u = et = ∂t : comoving & inertial
I velocity one-form: u = −E t = −dt

Static fluid without expansion, shear or vorticity



Notes

The fluid may be perfect or not

Tvisc = − (2ησµν + ζhµνΘ) eµ ⊗ eν

Tvisc = 0 if the congruence is shear- and expansion-less

A shear- and expansion-less isolated fluid is geodesic if [Caldarelli et al. ’08]

∇uε = 0

∇p + u∇up = 0

fulfilled here with ε, p csts.

Only δg(o)µν give access to η and ζ via 〈δT(o)µν〉



More general examples

We can exhibit backgrounds with stationary boundaries and fluids

T = (ε + p)u⊗ u + pηµνeµ ⊗ eν

I ε = 2p: conformal
I ∇uu = 0: inertial
I u = e0: at rest (comoving)



On vector-field congruences [Ehlers ’61]

Vector field u with uµuµ = −1 and space–time variation ∇µuν

∇µuν = −uµaν + σµν +
1

D − 1
Θhµν + ωµν

I hµν = uµuν + gµν: projector/metric on the orthogonal space
I aµ = uν∇νuµ: acceleration – transverse
I σµν: symmetric traceless part – shear
I Θ = ∇µuµ: trace – expansion
I ωµν: antisymmetric part – vorticity

ω =
1
2

ωµνdxµ ∧ dxν =
1
2
(du + u ∧ a)
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AdS Taub–NUT: the nut charge

Reminder: the bulk data [Taub ’51, Newman, Tamburino, Unti ’63]

ds2 =
dr̃2

V (r̃)
− V (r̃) [dt − 2n cos ϑ dϕ]2 + ρ2

[
dϑ2 + sin2 ϑ dϕ

]2
V (r̃) = ∆/ρ2 with

∆ =
(
r̃2 − n2

) (
1+ k2

(
r̃2 + 3n2

))
+ 4k2n2r̃2 − 2Mr̃

ρ2 = r̃2 + n2



The Fefferman–Graham expansion with r s.t. dr/kr = dr̃/
√

V (r̃ )

I boundary coframe and frame

E t = dt − b E ϑ = dϑ
k E ϕ = sin ϑ dϕ

k
et = ∂t eϑ = k ∂ϑ eϕ = − 2kn(1−cos ϑ)

sin ϑ ∂t + k
sin ϑ ∂ϕ

b = −2n(1− cos ϑ)dϕ

I boundary stress current

F t = −2Mk
3

E t F ϑ =
Mk
3

E ϑ F ϕ =
Mk
3

E ϕ



For comparison: AdS Kerr

The Fefferman–Graham expansion of θt , θϑ, θϕ

I boundary orthonormal coframe and frame

E t = dt − b E ϑ = dϑ
k
√

∆ϑ
E ϕ =

√
∆ϑ sin ϑ dϕ

kΞ

et = ∂t eϑ = k
√

∆ϑ ∂ϑ eϕ = ka sin ϑ√
∆ϑ

∂t + kΞ
sin ϑ
√

∆ϑ
∂ϕ

b =
a sin2 ϑ

Ξ
dϕ

I boundary stress current

F t = −2Mk
3

E t F ϑ =
Mk
3

E ϑ F ϕ =
Mk
3

E ϕ



The boundary metric and stress tensor

ds2bry. = ηµνE µE ν = g(0)µνdxµdxν

= − (dt + 2n(1− cos ϑ)dϕ)2 + 1
k2
(
dϑ2 + sin2 ϑdϕ2)

T = TµνE µE ν =
κMk
3

(
2(E t)2 + (E ϑ)2 + (E ϕ)2

)
Fluid interpretation: perfect-like stress tensor

I conformal fluid with ε = 2p = 2κMk/3

I velocity field u = et = ∂t : comoving & inertial

Fluid without expansion and shear but with vorticity

ω =
1
2
db = −n sin ϑdϑ ∧ dϕ = −k2nE ϑ ∧ E ϕ



How does vorticity i.e. rotation get manifest?
Boundary geometries are stationary of Randers form [Randers ’41]

ds2 = − (dt − b)2 + aijdx idx j

and the fluid is at rest: u = ∂t

I ∇∂t ∂t = 0: the fluid is inertial and carries vorticity ω = 1
2db

I ∇∂t ∂i = ωijajk (∂k + bk∂t): frame and fluid dragging

Other privileged frames exist where the observers experience
differently the rotation of the fluid – e.g. Zermelo dual frame



AdS Taub–NUT: more on the boundary and CTCs

Homogenous boundary space–time: Lorentzian squashed 3-sphere

ds2bry. = 1
k2

(
(σ1)2 +

(
σ2)2)− 4n2

(
σ3)2

= − (dt − 2n(cos ϑ− 1)dϕ)2 + 1
k2
(
dϑ2 + sin2 ϑdϕ2)

I Stationary foliation in 2-spheres with a time fiber
I Gödel-like space sourced by dust distribution [classification in

Raychaudhuri et al. ’80, Rebouças et al. ’83]

I CTCs of angular opening < 2ϑ0 (gϕϕ(ϑ0) = 0) – no closed
time-like geodesics

I Special point: south pole of the 2-sphere – track of the Misner
string – can be moved anywhere by homogeneity



Around the poles: Som–Raychaudhuri and cosmic spinning string

I North pole: Som–Raychaudhuri space – sourced by rigidly
rotating charged dust [Som, Raychaudhuri ’68]

ds2 = −
(
dt + Ω$2dϕ

)2 + $2dϕ2 + d$2

Ω = k2n and $ = ϑ/k

I South pole: spinning cosmic string [vortex in analogue gravity]

ds2 = − (dt + Adϕ)2 + $2dϕ2 + d$2

A = 4n−Ω$2 and $ = π−ϑ/k

Around the poles of Kerr: Som–Raychaudhuri with Ω = −k2a



Kerr vs. Taub–NUT “rotation” [Dowker ’74, Bonnor ’75, Hunter ’98]

I Kerr: rigid rotation with angular momentum and velocity
I horizon at r = r+: fixed locus of ∂t + ΩH∂ϕ → bolt
I pair of nut–anti-nut at r = r+, ϑ = 0, π (fixed points of ∂ϕ)

connected by a Misner string [Argurio, Dehouck ’09]

asymptotically Ω∞ = −ak2
I Taub–NUT: “non-rigid rotation” with angular momentum

distribution along the Misner string (vanishing integral) –
asymptotically:

I north pole: angular velocity Ω∞ = nk2
I south pole: no angular velocity
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The Zermelo problem

What is the minimal-time trajectory of a non-relativistic ship sailing
on a space with positive-definite metric dt2 = hijdx idx j and velocity
U i = dx i/dt s.t. ‖U‖2 = 1?

I time functional is

T =
∫

dt
√

hijU iU j

I minimization is realized with geodesics of dt2



What happens in the presence of a lateral drifting flow W = W i ∂i
(“wind” or “tide”)? [Zermelo ’31]

I velocity: U i = dx i/dt = V i +W i

I U: vector tangent to the trajectory
I V: “propelling” velocity with ‖V‖2 = 1

I no longer aligned with the trajectory
I instantaneous navigation road – velocity of the ship with

respect to a local frame dragged by the drifting flow

I norm: U2 = 1+ W2 + 2V ·W



I time functional is

T =
∫
dt

(√
U2

1−W2 +
(

W·U
1−W2

)2
− W·U

1−W2

)
=
∫
dt
(√(

hij
λ + WiWj

λ2

)
U iU j − WkUk

λ

)
with λ = 1−W2

I minimization is realized with null geodesics of the Zermelo
metric

ds2 =
1
λ

(
−dt2 + hij

(
dx i −W idt

) (
dx j −W jdt

))
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Note: the time functional is of Randers type with Finsler Lagrangian

T =
∫

dt F (x i ,U i )

with
F (x i ,U i ) =

√
aijU iU j + biU i

and

aij =
hij

λ
+

WiWj

λ2 bi = −hijW j

λ

the data of the Randers form



Equivalently Randers stationary forms are recast as Zermelo metrics

ds2 =
1
λ

(
−dt2 + hij

(
dx i −W idt

) (
dx j −W jdt

))
with

hij = λ (aij − bibj )
λ = 1− bibjaij

W i = − aijbj
λ

Null geodesics in Zermelo metric are minimal-time curves for sailing
in the base space of metric dt2 = hijdx idx j under the influence of a
drifting “wind” W = W i ∂i [Zermelo ’31]



Analogue gravity picture

Zermelo metrics are acoustic [see e.g. Visser ’97, Chapline, Mazur ’04]

Propagation in D − 1-dim moving media

m

Waves or rays in D-dim “analogue” curved space–times

ds2 =
$

cs

(
−c2s dt2 + hij

(
dx i −W idt

) (
dx j −W jdt

))
Null geodesics describe sound propagation in non-relativistic fluids
moving on geometries hijdx idx j with velocity fields W = W i ∂i

I inviscid, isolated, barotropic (dh = dp/$)
I local mass density $ and pressure p
I local sound velocity cs = 1/√∂ρ/∂p



Alternatively the whole boundary set up could be a gravitational
analogue of sound propagating in moving fluids or light in moving
dielectrics – acoustic/optical black holes

As such our examples fall in a larger class of backgrounds studied in
analogue systems [Gibbons et al. ’08] – here equipped with a stress tensor
Randers & Zermelo backgrounds address the problems of

I motion of charged particles in magnetic fields
I sailing in the presence of a drift force
I sound propagation in moving media

and are dual to each other



Where are we?

Exploratory tour of some properties of conformal holographic fluids
moving in non-trivial gravitational backgrounds

I inertial
I carrying vorticity

Vorticity appears in various fashions

I Kerr → solid rotation on the boundary: dipole
I Taub–NUT → vortex on the boundary: monopole

More general multipoles?



More general "multipolar" vortices on the boundary

b = 2(−1)`α (1− P`(cos ϑ)) dϕ
ω = (−1)`αP ′`(cos ϑ) sin ϑ dϑ ∧ dϕ

I for odd ` there is indeed a vortex around the track of the
Misner string at the south pole with a nut-like charge

α = − 1
4π

∫
ω

I for even ` the Misner string does not reach the poles and the
total charge vanishes – e.g. Kerr as a dipole with α = a/3Ξ

Bulk realization for ` ≥ 3: generalization of Weyl multipoles [Weyl ’19]

(` = 0 is Schwarzschild with dt → dt + dϕ) [work in progress]



Bonus

Alternative analogue interpretation of the boundary backgrounds:
propagation of sound/light in moving media (Randers & Zermelo)

I provides holographic AdS/analogue-gravity correspondence
I evades the CTCs caveats within supersonic/superluminal flows

Bulk for general Randers–Papaterou geometries?
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